

Exam, DAT038/TDA417 (with solutions)
Data structures and algorithms
Sample exam, 2019-12-16

There will be 6 basic questions, and 3 advanced questions, and two points per
question. So, the highest possible mark is 18 in total, of which 12 on the basic
questions and 6 on the advanced questions. Here is what you need to do to get each
grade:

● To pass the course, you must get 8 out of 12 on the basic questions.
● To get a four, you must get 9 out of 12 on the basic questions, and also get 2

out of 6 on the advanced questions.
● To get a five, you must get 10 out of 12 on the basic questions, and also get 4

out of 6 on the advanced questions.

Grade Total points Basic points Advanced

3 ≥ 8 ≥ 8 —

4 ≥ 11 ≥ 9 ≥ 2

5 ≥ 14 ≥ 10 ≥ 4

Good luck!

Write your anonymous code (not your name) here: ____________

Basic question 1 (complexity)
What are the order-of-growths for these functions? Assume that each step in the
code takes a constant amount of time to run.

The following algorithm takes as input an array, and returns the input array with
all the duplicate elements removed. For example, if the input array is {1, 3, 3, 2, 4,
2}, the algorithm returns {1, 3, 2, 4}.

S = new empty set
A = new empty dynamic array
for every element x in input array {
 if not S.contains(x) then {
 S.add(x)
 A.add(x)
 }
}
return A

1A) What is the order of growth of this algorithm, if the set S is
implemented using a red-black tree?

Order of growth: n log n

(explanation, not needed to pass the question: S has size at most n, so the body of
the loop takes log n time, and it runs n times)

1B) What is the order of growth of this algorithm, if the set S is
implemented using a hash table with linear probing? You may assume
that the hash function used is of high quality.

Order of growth: n

(explanation: this time the loop body takes expected constant time)

Write your anonymous code (not your name) here: ____________

Basic question 2 (binary search)
Your job is to complete the following program for binary search. It takes an array of
integers and a key to search for. It should return the index in the array where the
key is found, or -1 if the key is not found.

The binary search routine is almost finished, except for the blank spaces marked by
“_______”, which you should fill in. The idea of the routine is that, at each
point, if the key is present in the array at all then it can be found in the interval
array[low]...array[high].

int binarySearch(int[] array, int key) {
 int low = 0;
 int high = array.length - 1;

 while (low <= high) {
 int mid = (low+high)/2;
 if (key < array[mid]) {
 hi = mid-1;
 } else if (key > array[mid]) {
 lo = mid+1;
 } else {
 return mid;
 }
 }
 return -1;
}

Write your anonymous code (not your name) here: ____________

Basic question 3 (priority queues)
Insert the following elements in sequence into an empty binary min heap: 6, 8, 4,
7, 2, 3, 9, 1, 5. Draw both the tree and array representations of the heap.

3A) Array representation

1 2 3 4 5 6 7 8 9

1 2 3 4 7 6 9 8 5

3B) Tree representation

Write your anonymous code (not your name) here: ____________

Basic question 4 (red-black BSTs)
Look at the 2-3 tree below.

4A) Draw the tree as a red-black BST. Draw black nodes as circles and
red nodes as squares.

Answer:

Write your anonymous code (not your name) here: ____________

4B) Insert 9 into the tree using the red-black insertion algorithm.

Write down the final tree.

Note: if you are a student of TDA416/DAT037, in the real exam there would be an
alternative question about AVL trees for you.

Answer:

(I solved this by inserting into the 2-3 tree and then converting to a red-black
tree. That works too!)

Write your anonymous code (not your name) here: ____________

Basic question 5 (hash tables)
Suppose you have the following hash table, implementing using linear probing. The
hash function we are using is the identity function, h(x) = x (mod 9).

0 1 2 3 4 5 6 7 8

9 18 12 3 14 4 21

In which order could the elements have been added to the hash table? There are
several correct orders, and you should give all of them. Assume that the hash table
has never been resized, and no elements have been deleted yet.

A) 9, 14, 4, 18, 12, 3, 21

B) 12, 3, 14, 18, 4, 9, 21

C) 12, 14, 3, 9, 4, 18, 21

D) 9, 12, 14, 3, 4, 21, 18

E) 12, 9, 18, 3, 14, 21, 4

Answer: C, D.

(In A, 4 would end up at index 4. In B, 18 would end up at index 0. In E, 21 would
end up at index 6.)

Write your anonymous code (not your name) here: ____________

Basic question 6 (graphs)
You are given the following weighted graph:

6A) Do a breadth-first search of the graph, starting from node A.

Which order do you visit the nodes in? There are several possible orders that a
breadth-first search could choose; choose two of these orders and write both of
them down below.

Answer (for example):

Node A C D B F G E H

Node A B D C E G F H

6B) Perform Dijkstra’s algorithm starting from node A.

In which order does the algorithm visit the nodes, and what is the computed
distance to each of them? There are several possible orders to visit the nodes in -
you may choose any of them.

Answer (for example):

Node A D C F B G E H

Distance 0 1 2 3 3 6 8 9

Write your anonymous code (not your name) here: ____________

Advanced question 7
Consider the following function:

public void f(int[] a, int m) {
 int[] b = new int[m];
 for (int i = 0; i < a.length; i++) {
 int j = a[i];
 b[j]++;
 }
 int i = 0;
 for (int j = 0; j < m; j++) {
 for (int k = 0; k < b[j]; k++) {
 a[i] = j;
 i++;
 }
 }
}

7A) What is printed out when executing the following code?

int[] a = new int[10] {5,3,7,1,0,3,5,4,3,6};
f(a, 8);
// The following line prints the contents of the array
System.out.println(Array.toString(a));

Answer: 0, 1, 3, 3, 3, 4, 5, 5, 6, 7

7B) What does the function f do? Explain as well the meaning of m.

Answer: It sorts the array (using counting sort). m is the number of buckets - the
input numbers must be all in the range 0 to m-1.

Write your anonymous code (not your name) here: ____________

Advanced question 8
Answer on a separate sheet of paper.

A bidirectional map is a symbol table which supports bidirectional lookup: given a
key, you can find the corresponding value, and given a value, you can find the
corresponding key.

In a bidirectional map there is always a one-to-one relationship between keys and
values. In other words, each key has exactly one value, and each value is found
under exactly one key.

A bidirectional map supports the usual symbol table operations:

● new(): create a new, empty bidirectional map
● put(k, v): add the mapping k → v to the map;

any existing mapping with key k or value v is removed.
● get(k): if the map contains a mapping k → v, return v
● delete(k): if the map contains a mapping k → v, delete it

It also provides an extra reverse operation:

● rlookup(v): if the map contains a mapping k → v, return k

The following example shows what the various operations do.

Operation Result

new() Map is {}

put(1,2) Map is {1 → 2}

put(3,4) Map is {1 → 2, 3 → 4}

lookup(1) Returns 2

put(4,2) Map is {3 → 4, 4 → 2}.
Notice that the mapping 1 → 2 is deleted.

rlookup(2) Returns 4

delete(4) Map is {3 → 4}

We can implement a bidirectional map as two red-black trees:

● forward is a symbol table mapping keys to values.
In the example above, it contains 3 → 4 and 4 → 2.

● back is a symbol table mapping values to keys.
In the example above, it contains 4 → 3 and 2 → 4.

Write your anonymous code (not your name) here: ____________

The invariant is that the two maps always contain the same data. More precisely,
forward contains the mapping k → v, if and only if back contains the mapping v →
k.

We can then implement new, lookup and rlookup as follows:

● new : set forward and back to be empty red-black trees
● lookup(k) : look up k in forward using the BST lookup algorithm
● rlookup(v) : look up v in back using the BST lookup algorithm

Your task is to implement the remaining operations, put and delete , so that they
take logarithmic time.

A) Work out how to implement delete , and write down your solution.

delete(k) {
 if forward contains k {
 v = forward.get(k)
 forward.delete(k)
 back.delete(v)
 }
}

B) Work out how to implement put , and write down your solution.

This is rather tricky! The problem is that when adding k → v, there may already be a
mapping with key k, or a mapping with value v. Both mappings have to be removed!
To get this right, I would recommend testing your code by hand, on the example
above, and checking that both maps have the right contents after each step.

put(k, v) {
 if forward contains k {
 v1 = forward.get(k)
 forward.delete(k)
 backward.delete(v1)
 }
 if back contains v {
 k1 = back.get(v)
 forward.delete(k1)
 backward.delete(v)
 }
 forward.put(k, v)
 back.put(v,k)
}

Write your anonymous code (not your name) here: ____________

For both parts, you should write down your answer either as pseudocode or Java
code. Your solution must take logarithmic time. You can use the standard
red-black tree operations (such as insertion and deletion) without explaining
how they are implemented.

Write your anonymous code (not your name) here: ____________

Advanced question 9
Answer on a separate sheet of paper.

In this question, you will think about double-ended priority queues, a data structure
that represents a collection of (e.g.) integers and supports the following
operations:

● void add(int x): add a new item to the priority queue
● int deleteMin(): remove and return the minimum item
● int deleteMax(): remove and return the maximum item

9A)

Here is an idea for implementing a double-ended priority queue, which
unfortunately does not work:

● Maintain a min-heap h1 and a max-heap h2, both initially empty.
● To implement add(x), add x to both h1 and h2.
● To implement deleteMin(), call h1.deleteMin().
● To implement deleteMax(), call h2.deleteMax().

Your job is to work out why this design does not work. Once you have done so, write
down a sequence of operations (calls to add, deleteMin and deleteMax) which, if
we run them starting from an empty priority queue, give the wrong answer. You
should write down your answer in the following format (note that this example
gives the right answer, however):

Operation Right answer Actual answer

add(3) - -

add(5) - -

deleteMin() 3 3

deleteMax() 5 5

Answer: (you can test this by hand to see what goes wrong)

Operation Right answer Actual answer

add(3) - -

deleteMin() 3 3

add(2) - -

Write your anonymous code (not your name) here: ____________

deleteMax() 2 3

9B)

In a binary tree, the level of a node is defined as follows: the root of the tree has
level 0, its children are at level 1, its grandchildren are at level 2, and so on. In other
words, the level of a node is the distance from the node to the root.

A min-max heap is a complete binary tree satisfying the following invariant:

● If a node is at an even level, its value is less than or equal to all values in the
node’s subtree.

● If a node is at an odd level, its value is greater than or equal to all values in the
node’s subtree.

Describe how to efficiently find the minimum and maximum elements in a
min-max heap. You may assume that the heap is non-empty. Write your answer
either as pseudocode or as Java code.

Be careful: there are a number of special cases! Make sure that your algorithm also
works for heaps that contain only one item or only two items.

Hint: try drawing a min-max heap first, to get a feel for what the invariant means.

Answer: the minimum element is at the root, just as in a min heap.

You can find the maximum element as follows:

● If the root has two children, return the maximum of those children
● If the root has one child, return that child
● If the root has no child, return the root

(The observation is that the root’s children are at level 1, so each of them is the
maximum of its respective subtree. But note the special cases when the root
doesn’t have two children!)

